
Simple Database Features

Now we come to the largest use of iSeries Navigator for programmers—the
Databases function. IBM is no longer developing DDS (Data Description
Specifications) for database definition, and all future database enhancements will
use DDL (Data Definition Language) in SQL (Structured Query Language).
Already, some database functions are only available through SQL.

If you want to keep up to date with the changes being made to UDB DB2 for
iSeries, you will have to become familiar with DDL, because DDS is not going
to do it for you anymore. iSeries Navigator has an enormous role to play in this
learning process, because it provides an easy-to-use graphical interface to most
of the DDL requirements without you having to become an expert in DDL. It
also provides a starting point for learning DDL.

The reason IBM is moving from DDS to DDL is that SQL is the industry stan-
dard for database on all platforms. In the current and developing environment, in
which are multiple platforms are present in an organization, it is important that a

87

44

common tool be used to define the most important asset across the platforms—
the database.

Figure 4.1 shows the Databases function accessed in iSeries Navigator. It allows
you to individually view and maintain all the components of a database. Prior to
V5R3 of OS/400, you could only view all the components as one group (the
equivalent of All Objects). The Databases function has an entry for each data-
base defined on your system. For most of us, only one database is identified by
the serial number of the system; there may be other entries if remote databases
have been defined on your system. See the Work with Relational Database
Directory Entries (WRKRDBDIRE) command or use New Relational
Database Directory Entry from the context menu of Databases for more informa-
tion on defining remote databases.

Terminology
The first thing you must get used to is SQL terminology. Table 4.1 lists the tradi-
tional OS/400 terms and their corresponding SQL terms; although enormous
similarities are obvious between the two, quite a few differences also exist,

CHAPTER 4: Simple Database Features

88

Figure 4.1: Databases in iSeries Navigator.

especially with views and indexes. I will discuss the pros and cons of SQL
versus DDS later in Chapter 9, once you have had an opportunity to become
familiar with the features in Navigator.

Although the terms may be different, the Databases function in iSeries Navigator
identifies all objects using the SQL terminology. So, a physical file that was cre-
ated from a DDS source member is identified as a table.

Schemas
A Schema (or Collection) is the SQL term for a collection of database objects.
Creating a schema on the iSeries, results in the creation of a library containing a
few predefined objects, as shown in Figure 4.2. iSeries Navigator does not
restrict you by only allowing access to a true schema, but also allows you to
access normal iSeries libraries. Database objects still will be displayed correctly,
even those defined using DDS or those created using SQL in a green-screen
environment.

Schemas

89

Table 4.1: OS/400 terms and the corresponding SQL terms

OS/400 SQL

Library Collection or Schema

Physical File Table

Record Row

Field Column

Logical File (Keyed) Index

Logical File (Non – Keyed) View

A new schema contains a journal (QSQJRN) and a journal receiver
(QSQJRN0001). Any tables created in the schema are automatically journaled to
QSQJRN. This is very useful during development, when using a test database,
but it warrants some serious consideration when moving into a production envi-
ronment. Having one journal per library would not be considered the norm in a
production environment.

The rest of the objects are SQL catalog views. These are views over the system
catalog files, with selection criteria for objects in this library.

CHAPTER 4: Simple Database Features

90

Figure 4.2: Objects created in a schema.

Table 4.2: Description of catalog views

Catalog View Description Catalog Files

SYSCHKCST Check constraints QADBFCST

SYSCOLUMNS Column attributes QADBIFLD
QADBXSFLD

SYSCST All constraints QADBFCST

Schemas

91

Table 4.2: Description of catalog views (continued)

Catalog View Description Catalog Files

SYSCSTCOL Columns referenced in a constraint QADBCCST
QADBIFLD

SYSCSTDEP Constraint dependencies on tables QADBFCST
QADBXREF

SYSINDEXES Indexes QADBXREF
QADBFDEP

SYSKEYCST Key constraints (unique, primary and
foreign)

QADBCCST
QADBIFLD

SYSKEYS Index keys QADBIFLD
QADBKFLD

SYSPACKAGE SQL Packages QADBPKG

SYSREFCST Referential Constraints QADBFCST

SYSTABLEDEP Materialized query table dependen-
cies

QADBXREF
QADBFDEP

SYSTABLES Tables and Views QADBXREF
QADBXMQT

SYSTRIGCOL Columns used in a trigger QADBXTRIGD
QADBXREF

SYSTRIGDEP Objects used in a trigger QADBXTRIGD
QADBXREF

SYSTRIGGERS Triggers QADBXTRIGB

SYSTRIGUPD Columns in the WHEN clause of a
trigger

QADBXTRIGB
QADBXTRIGC

SYSVIEWDEP View dependencies on tables QADBXREF
QADBFDEP
QADBXREF

SYSVIEWS Definition of a view QADBXREF

The system catalog files are stored in QSYS and contain cross-reference infor-
mation about every database object on the system, regardless of whether it was
generated using SQL or DDS. You can view a list of the catalog files using the
command:

WRKOBJPDM LIB(QSYS) OBJ(QADB*) OBJTYPE(*FILE) OBJATR(‘pf-dta’)

Schemas Displayed
When you first use the Databases function, the libraries QTEMP and QGPL are
listed under Schemas, and you may be inclined to think that a library list is
being used. This is not the case—you determine which schemas (or libraries) are
to be listed.

Select Databases Database Name and then Select Schemas to Display from
the context menu of Schemas to see the selection window shown in Figure 4.3.
You can enter the names of the schemas to add to the list, or you can select and
add them from a filtered list.

CHAPTER 4: Simple Database Features

92

Figure 4.3: Select Schemas to Display.

When you select a schema, you have the choice of listing All Objects or select-
ing the individual type of database objects to list. Be aware that All Objects does
not refer to actual iSeries objects, but to database objects. For example, con-
straints are listed—and constraints are not iSeries objects. Also, nondatabase
objects, such as programs, are not listed.

Tables
Tables are the base building blocks for a database. Select New Table from the
context menu of Tables to see the window shown in Figure 4.4. The window has
tabs for Table, Columns, Key Constraints, Foreign Key Constraints, Check
Constraints and Partitioning. Select Definition from the context menu for a table
to change its definition.

Table
You name the table in the Table tab, and it is also where you see one of the first
differences between DDS and SQL. DDS is restricted by the normal ten-character

Tables

93

Figure 4.4: Creating a new table.

restriction on names, but this is not so for SQL: SQL names can be up to 128
characters long.

When you specify a table name, you are specifying the SQL name. In Figure
4.4, note the System table name entry with a default value of System-generated.
When the table name exceeds ten characters, the system generates a ten-charac-
ter System table name by taking the first five characters of the name and adding
a five-digit sequence number.

Just in case you are looking for an entry that allows you to specify the record
format name—there isn’t one. The format name and the table name are the same
when you create a table. This is a problem for RPG programs, because the RPG
compiler does not allow the file name and the format name to be the same. Two
solutions are possible: In the RPG program, use the RENAME keyword on the
file specification to rename the record format, or create the table with the name
of the format and then rename the table object.

Columns
You specify a table’s columns in the Columns tab (Figure 4.5 shows a completed
column list). You use the Add and Definition buttons to define columns, the
Remove, Move Up, and Move Down buttons to sequence columns. You can use
the Browse button to select columns from other tables. The Move Up and Move
Down buttons are not available when changing the definition of a new table, and
new columns may only be added to the end of the list. The Browse function is
not the same as using a field reference file. It only provides a simple copy-and-
paste function. I will be discussing the equivalent of a field reference file in
Chapter 5.

CHAPTER 4: Simple Database Features

94

Figure 4.6 shows the window displayed when you add or define a column. When
adding columns, the Add window stays in place until you select the Close
button.

Tables

95

Figure 4.5: Defining columns for a table.

Figure 4.6: Defining a column.

Again, you must be careful of the length of the name: A name exceeding ten
characters in length will default to a system-generated name unless you specify a
short name.

A few more Data Types are available in SQL than in DDS, even to the extent
that you can define your own data types (more about this in Chapter 5). Certain
data types are not allowed in high-level language programs. Table 4.3 lists the
data types available in SQL and their DDS equivalents, and indicates whether
the data types are available in high-level languages. The requirement to specify
Length, Precision, and/or Encoding depends on the Data Type selected.

CHAPTER 4: Simple Database Features

96

Table 4.3: Comparison of data types and usage in high-level languages

SQL DDS Allowed in HLL

INTEGER Binary (9, 0) Yes

SMALLINT Binary (4, 0) Yes

BIGINT Binary (18, 0) Yes

DECIMAL Packed Yes

NUMERIC Zoned Yes

FLOAT Float Yes

CHARACTER Character Yes

VARCHAR Character Varying Yes

GRAPHIC Graphic Yes

VARGRAPHIC Graphic Varying Yes

DATE Date Yes

TIME Time Yes

TIMESTAMP TimeStamp Yes

DATALINK N/A No

CLOB N/A No

You also must take care with the Nullable check box. In SQL, the default is that
columns are null capable, which is not the default in DDS, in which you have to
explicitly indicate if a column is null capable. Pay special attention when you are
adding columns, because the Nullable box is rechecked when you switch Data Type.

When you add a column with a data type of SMALLINT, INTEGER, BIGINT,
DECIMAL, or NUMERIC, you are given the option of setting the column as an
Identity Column. An Identity Column provides a means to uniquely identify
every row in a table. Every time that a new row is added to a table having an
identity column, the identity column value in the new row is incremented (or
decremented) by the system.

Constraints
Constraints will be discussed in more detail in Chapter 6. For the moment, it
suffices to say that Constraints are a key component to the development of any
database, and they are an absolute necessity if your database is going to be
accessed from sources other than your iSeries.

Partitioning
Partitioning allows you to divide a table into a maximum of 256 partitions, each
of which can contain the maximum number of rows for a table (approximately
4,294,000,000).

Tables

97

Table 4.3: Comparison of data types and usage in high-level languages (continued)

SQL DDS Allowed in HLL

BLOB N/A No

DBCLOB N/A No

BINARY Binary Character No

VARBINARY Binary Character Varying No

ROWID Hexadecimal Yes

Other Differences
Two important defaults are different when creating a table, as opposed to creating
a physical file. The maximum size of a table is No Maximum (SIZE(*NOMAX)),
and the assumption is to reuse deleted records (REUSEDLT(*YES)). If required,
these values can be changed under the General and Allocation tabs, when you
select Description from the context menu for a table.

Edit Contents
Once a table has been created, you can insert, update, or delete rows by using
the Edit Contents option (the default) from the context menu of the table. Figure
4.7 shows an example of maintaining data in a table; the value in any column
can be changed by simply overtyping it. Rows may be inserted or deleted by
making the relevant selection from the Rows option on the menu.

If the table is journaled (the default for a table created in a schema), then any
changes you make are not actually applied until you close the file editor. That is,
the editor does not commit the changes until you exit. If the table is not jour-
naled, then the changes to rows are immediate, and you will receive a warning
message for the first row that you try to insert, update, or delete.

The ability to edit the contents of a file should be considered as a replacement
for the Data File Utility (DFU) and should only be used to maintain data in test

CHAPTER 4: Simple Database Features

98

Figure 4.7: Editing the contents of a table.

tables—it should not be used to maintain data in production tables, not that the
thought would ever cross your mind.

Indexes
An Index is the equivalent of a keyed logical file with no column or record
selection defined.

The easiest way to define a new index is to select New Index from the con-
text menu of a table. You can also select New Index from the context menu
for Indexes. Figure 4.8 shows the definition window f or a new index.

You must be even more careful when naming indexes than you were when nam-
ing tables and columns. For some strange reason, you do not have the option of
defining a short name for an index, so it will be system-generated if the length
of the Index name exceeds ten characters.

Indexes

99

Figure 4.8: Creating a new index.

Use the Add button to add the required columns that make up the key, and use
the Move and Set buttons to ensure the sequence is correct. Be careful when
adding columns: They are always added to the top of the list. You soon get used
to defining your keys in reverse.

The Index type can be Unique, Not unique, Unique where not null, or an
Encoded Vector. An Encoded Vector Indexes (EVI) keeps track of the distinct
values that can be found in the key columns of a table. An EVI can improve data
warehouse performance queries, as well as business applications queries, but an
EVI cannot be used to ensure any expected ordering of records and cannot be
used to position an open data path. In other words, an EVI may be used by the
Query Optimizer when running a selection against the database, but it may not
be used in a high-level language. You only use an EVI to enhance performance
when ad-hoc queries are present against the database.

The Number of distinct values entry is primarily for EVIs and is used to deter-
mine the size of each entry. For other index types, the entry can be an estimate
of the number of entries expected in the index that may (or may not) be of use to
the Query Optimizer.

The following code is the DDS equivalent of the index defined in Figure 4.8.
DDS does not have the ability to define an EVI.

A UNIQUE
A R SAMEMPL01 PFILE(SAMPL00001)
A K EMPID

Indexes for a Table
Select Indexes from the context menu of a table to see a window listing all
indexes built over a table, as shown in Figure 4.9. One of the disconcerting fea-
tures is that the text description of the indexes seems to have disappeared. The
text description is there when you list the indexes using the Indexes selection for
the Schema, as shown in Figure 4.10.

CHAPTER 4: Simple Database Features

100

The reason for this is that the text you define for the index is placed in the sys-
tem catalog file as the long comment for the index (look at the contents of
SYSINDEXES), but it is not duplicated as the text for the *FILE object created
for the index. The index window for the table (Figure 4.9) shows the text from
the object description while the indexes for a schema (Figure 4.10) shows the
text from the system catalog file.

You can change the object description by selecting Description from the con-
text menu of the index and changing the value of the Description entry under
the Details tab. But it is a pity that this is not done automatically, as it is for
tables.

Indexes

101

Figure 4.9: Indexes defined for a table.

Other Differences
Two other differences are apparent between creating indexes and creating keyed
logical files from DDS.

Indexes have a larger page size in memory (64K as opposed to 4K or 8K),
which leads to a faster processing time for an index when processing sequen-
tially by key.

An index will only share an access path if all the key fields match, whereas a
logical file can share an access path if its key fields are a subset of an existing
access path.

Views
A View is a nonkeyed logical file; in other words, you can define everything
except a key. Views highlight another major difference between SQL and DDS.
In this chapter, we’ll just look at the basic definition of a view. Some of the
more advanced features are described in Chapter 5, so not all options and but-
tons available will be discussed here.

CHAPTER 4: Simple Database Features

102

Figure 4.10: Indexes for a schema.

Let’s have a look at creating a view that gives us the equivalent for the following
DDS:

A R SAMEMPL01 PFILE(SAMPL00001)
A EMPID
A NAME
A SALARY
A S SALARYK COMP(GT 1000000)

To create a new view select New View from the context menu for Views in
the Schema. Figure 4.11 shows the New View window, where you provide a
Name and Description. As with indexes, you must be very careful with the
name; there is no option to provide a short name, so if the name exceeds ten
characters, you will end up with a system-generated name for the object name.

Views

103

Figure 4.11: Naming a new View.

Figure 4.12 shows the completed definition of a view that selects the Employee
Id, Name, and Salary from the SAMPLE_EMPLOYEE table and only selects
rows where the salary is greater than 100,000.00. The view is constructed using
the Select Tables and Select Rows buttons.

Select Tables
The Select Tables button is a slight misnomer, since it actually allows you to
select views as well as tables. This is one of the major benefits of SQL: You can
define a view of a view. The Select Tables button presents you with a window
that allows you to select tables and views from any of the selected schema, as
shown in Figure 4.13. Select a table or view, and use the Add button to add it to
the View.

CHAPTER 4: Simple Database Features

104

Figure 4.12: Defining a View.

Select Columns
To select columns, you simply drag and drop them from the table (or view) win-
dow in the upper pane to the column list in the bottom pane, as shown in Figure
4.12. You can change the sequence of selected columns by simply dragging and
dropping them to their new position.

Views

105

Figure 4.13: Selecting tables and views for a View.

Select Rows
The Select Rows button presents you with a window similar to that shown in
Figure 4.14. This example is a simple selection where the salary is greater than
100,000.00.

The Columns pane lists all columns available; these are all the columns from the
selected tables and views, not just the columns selected for the view. You specify
the selection criteria by entering an SQL WHERE clause in the Clause pane, if
you are familiar with SQL, or you can select columns and operators by double
clicking them. You also may make use of any of the SQL functions listed.

Selecting rows for a view is another area in which SQL offers significant advan-
tages over the select/omit logic in logical files. For example, you can specify a
view that returns rows where the number of years difference between the date of
birth and today’s date is greater than 30 years, or you can specify a view that
returns rows where the salary is greater than the average salary for the company.
These are two criteria that you would not even consider in a logical view.

CHAPTER 4: Simple Database Features

106

Figure 4.14: Selecting Rows for a View.

Changing Views
iSeries Navigator provides an excellent interface for creating a new view, but it
does not provide one that allows you to maintain a view. When you select
Definition from the context menu for a view, you are presented with a window
that allows you to change little or none of the details of the view. It is better to
delete and recreate the view or to resort to using actual SQL.

Basics Done
This chapter has given you an overview of how you can use iSeries Navigator to
define the tables, indexes, and views that emulate the creation of physical and
logical files from DDS source. It has also shown some of the differences
between DDL and DDS—some good and some bad.

But what about Field Reference files, and where is the source for what you have
created? And what about join logicals? And what else do DDL and the Databases
function in iSeries Navigator have to offer? Let’s move on to Chapter 5.

Basics Done

107

